

Global Water, Wastewater & Reuse Treatment Solutions

Ronen Barkan – N. America Sales Manager

RMCP Committee Meeting January 2020

fluence - Value from Water

Formed in 2017

High-quality water solutions for potable and process water

Wastewater treatment for reuse in municipal, industrial and commercial sites

350 highly-trained water professionals

Experience operating in 70 countries

Offices at US, China, Argentina, Brazil, Israel, Italy and Dubai

Traded on the Australian Stock Exchange (FLC)

Merging global innovators with a fieldproven execution team to deliver breakthrough water technology solutions to the world

Global Presence

★ Headquarters
White Plains, USA

Operating Entities

Mar del Plata, Argentina Jundíai, Brazil Changzhou, Jiangsu, China Caesarea, Israel Padova, Italy Minneapolis, USA

Regional Offices

Melbourne, Australia Beijing, China Shanghai, China Karmiel, Israel Dubai, UAE Batavia, USA Manila, Philippines

Custom-Engineered Solutions: Solving Water and Wastewater Challenges

Industrial Water Treatment

EPC Projects

Waste-to-Energy

Industrial Wastewater
Treatment

Packaged Wastewater Treatment

Food & Beverage Processing

Aeration

Industrial Process Water

Custom solutions designed and built for customers worldwide

Installations Worldwide

>7,000 installations in >70 countries

MABR Technology

fluence[™] - Process Flow Diagram

Wastewater Aeration Process Evolution of Energy Consumption

Surface Aerators

3 kWh/kg COD

Coarse Bubble Diffusers

2 kWh/kg COD

Fine Bubble Diffusers

1.5 kWh/kg COD

Including nitrification

Fluence MABR

< 0.2 kWh/kg COD

Including nitrification

1950-1970

1980-1990

1990-2010

2015 -

The MABR Technology

- Wastewater is contacted with the surface of an aerated sleeve of oxygen permeable material
- Aerobic bacteria that develop on the surface of the sleeve treat the wastewater

Fluence MABR Technology

Membrane Aerated Biofilm Reactor

- Air is supplied to a spirally wound, semi permeable membrane
- The MABR spiral is submerged in the mixed liquor

- An air spacer inside the sleeve allows low pressure air flow
- A water spacer defines the water volume in contact with the membrane

- Intermittent mixing causes wastewater to circulate through the spiral
- An aerobic nitrifying biofilm develops on the surface of the membrane

Membrane Aerated Biofilm Reactors ("MABR") Technology

"MABRs are especially effective for total nitrogen (TN) removal, due to the counter-gradient diffusion of substrates" (Essila, Semmens et al. 2000; Lee and Rittmann 2002).

Stanford CR2C Case Study

Stanford CR2C to evaluate Fluence MABR

- The Codiga Resource Recovery Center (CR2C) facility is equipped to perform pilot testing of promising technologies for the recovery of resources (clean water, nutrients, energy, renewable materials) from wastes
- CR2C consists of core infrastructure for supply of various water and wastewater streams and testing infrastructure for evaluating removal and recovery technologies
- Dr. Craig Criddle in the Department of Civil and Environmental Engineering is the principal investigator for this project
- The tests are aimed at:
 - Ascertaining that the new MABR process can achieve Title 22 standards
 - Checking the technology overall performance
 - Studying the unique properties of MABR treatment

The MABR Demonstration and Test Unit

Stanford Demo Unit

- Unique properties of MABR technology will be evaluated including:
 - Biological Nutrients removal (TN and TP)
 - Simultaneous nitrification and denitrification
 - Energy savings over CAS-MLE and MBR technologies
- Tests are for pilot-scale testing facility
 - The unit treats 11m³/d (2880gpd) of raw sewage
 - The system includes:
 - An electro-mechanical fine screen
 - 2 MABR Gen 2.1 units with aeration and mixing accessories
 - A secondary clarifier with RAS/WAS circulation pump
 - A tertiary pressurized sand filter
 - A chlorination unit
 - The system is packaged in a 20' container

S2 V	1. 550	fa c			
	ww	1st	254	Eff 2nd	
CODT	1.125	69.1	54	32.5	
s NHg+	57	13,2	5	3.7	
5 NO-	< 1	29,1	33.3	23.1	
0					

Unit installation January 2018

WILLIAM AND CLOY CODIGA
RESOURCE RECOVERY
CENTER AT STANFORD
UNIVERSITY (CR2C)

FACILITY DEDICATED TO SCALE-UP
AND TESTING OF NEW
TECHNOLOGIES FOR
RESOURCE RECOVERY

CR2C Process Diagram & Test Beds

- Currently connected to de-gritted wastewater
- Tested with MS effluent during startup

Process Flow

Stanford | Codiga Resource Recovery Center

Stanford University

Testing for N Removal & California Title 22 Reuse Standards

TARGET CATEGORY: DISINFECTED TERTIARY RECYCLED WATER

WITH COAGULATION:

TERTIARY EFFLUENT TURBIDITY

Average < 2 NTU within 24-hr period

BACTERIOLOGICAL:

Total Coliform of 2.2 MPN/100 mL

AND

- Chlorine CT of 450 mg-min with 90 minute contact time
 OR
- 99.999% removal of MS2 bacteriophage virus or polio virus

Fluence MABR Influent Wastewater Characteristics

- High strength wastewater
- ~3X nitrogen concentrations
- Low Alkalinity
- COD:BODu = 2.4
- BOD_u to TN ratio: 5.0 vs.
 8.4 (regular WW)

Parameter	Unit	CR2C Concentration	Metcalf & Eddy ¹	
COD			Medium Strength	
- Total COD	mg/L	1220	806	
- Soluble COD	mg/L	377	-	
BOD ₅	mg/L	341	200	
BOD _u	mg/L	499	293 ²	
TSS	mg/L	563	195	
VSS	mg/L	529	152	
рН	-	7.93	-	
Alkalinity	mg CaCO ₃ /L	331	-	
Ammonia	mg N/L	64	20	
Nitrate	mg N/L	0-1	0	
Total Nitrogen	mg N/L	100	35	
Total Phosphorus	mg P/L	8.1	5.6	

^{1.} Metcalf and Eddy (2014), "Wastewater Engineering: Treatment and Reuse", 5th Edition, the McGraw-Hill Companies, Inc.

^{2.} Calculated from the data given in the book

Total Nitrogen and Ammonia

Codiga Resource Recovery Center

MAX	125	19		
MIN	82	2.20		
Mean	108	8.6		
STDev	12.8	6.15		
n	19	17		
NH3				
	Influent	Effluent		
MAX	79	11.1		
MIN	49	0.00		
Mean	68	2.52		
STDev	9.44	3.68		
n	20	19		
Removal Efficiency				
	TN	NH_3		
Range	82-98%	85-100%		
Mean	92%	96%		
Stanford University				

TN

Influent

Effluent

Stanford University

Acknowledgements

PROF. CRAIG CRIDDLE

SEBASTIEN TILMANS, PHD

FLUENCE CORP

TAMMY AFRIAT

FELIPE CHEN

FABRIZZIO BULACIA

Pilot Plant at Codiga Resource Recovery Center

Location	Stanford, CA, USA			
Project	Pilot plant for 3 rd party evaluation			
Design Parameters	 Flow: 11 m³/D (3,000 GPD) Wastewater characteristics: Highly concentrated wastewater Wastewater minimum temperature: 60° F 			
Raw waste water Influent	 COD_t: 1,220 mg/l TSS: 563 mg/l TN: 100 mg/l Phosphorous: 8.1 mg/l 			
Effluent Requirements	 Phase 1 (Title 22): Turbidity: 2 NTU E. Coli: 2.2 MPN/100 ml Phase 2 (MD Reg.): TN: 3 mg/l TP: 0.3 mg/l 			
Solution	MABR			
Results	Next Slide			

Pilot Plant at Codiga Resource Recovery Center Meets California Title 22 Requirements

Pilot Plant at Codiga Resource Recovery Center Meets Maryland ENR Requirements

		TN (mg/l-N)		TP (mg/l)		
Date	Time	Certified lab	Infl.	Eff.	Inf.	Eff.
5/30/18	Evening	Cel analytical	104	0.873	8.3	0.264
31/5/18	Morning	Cel analytical	122.4	1.23	10.2	0.268
6/5/18	Evening	Cel analytical	113.6	2.6	9.1	0.228
6/6/18	Morning	Torrnet Laboratory	113.6	0	9.7	0.23
6/7/18	Morning	Torrnet Laboratory	112	2.6	9.1	0.14

Maryland, ENR Regulations Met

Thank you

Ronen Barkan – N. America Sales Manager

rbarkan@fluencecorp.com

Visit our new website: www.fluencecorp.com

